Measure-preserving transformations of Volterra Gaussian processes and related bridges

نویسنده

  • Céline Jost
چکیده

We consider Volterra Gaussian processes on [0, T ], where T > 0 is a fixed time horizon. These are processes of type Xt = R t 0 zX(t, s)dWs, t ∈ [0, T ], where zX is a square-integrable kernel, and W is a standard Brownian motion. An example is fractional Brownian motion. By using classical techniques from operator theory, we derive measure-preserving transformations of X, and their inherently related bridges of X. As a closely connected result, we obtain a Fourier-Laguerre series expansion for the first Wiener chaos of a Gaussian martingale over [0,∞). MSC: 60G15; 37A05; 42C10; 60G44

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

A Note on Ergodic Transformations of Self-similar Volterra Gaussian Processes

We derive a class of ergodic transformations of self-similar Gaussian processes that are Volterra, i.e. of type Xt = ∫ t 0 zX(t, s)dWs, t ∈ [0,∞), where zX is a deterministic kernel and W is a standard Brownian motion. MSC: 60G15; 60G18; 37A25

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

Absolute Continuity of Brownian Bridges Under Certain Gauge Transformations

We prove absolute continuity of Gaussian measures associated to complex Brownian bridges under certain gauge transformations. As an application we prove that the invariant measure for the periodic derivative nonlinear Schrödinger equation obtained by Nahmod, Oh, Rey-Bellet and Staffilani in [20], and with respect to which they proved almost surely global well-posedness, coincides with the weigh...

متن کامل

Construction of Brownian Motions in Enlarged Filtrations and Their Role in Mathematical Models of Insider Trading

In this thesis, we study Gaussian processes generated by certain linear transformations of two Gaussian martingales. This class of transformations is motivated by nancial equilibrium models with heterogeneous information. In Chapter 2 we derive the canonical decomposition of such processes, which are constructed in an enlarged ltration, as semimartingales in their own ltration. The resulting dr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006